Metal forming:

Rolling mills

wire flattening & shaping lines

Swaging machines



Micro Laser Marker:

  • The smallest and best priced direct metal marking system.
  • Enable to mark multiple substrates.
  • All in one system doesn’t need a separate controller.
  • Plug and Play.
  • Class I enclosure available.
  • 2-year, complete system warranty.
  • Model available : UM-2

Spring coiling concept
Spring coilers for automation
Spare parts 
Spring detangling/feeding

Green Laser Marker

  • Best priced “Green” laser marker in the market.
  • Ideal for marking in semiconductors.
  • Capable of micro-marking ( 0.04” or 1mm text or coding)
  • Fast, clear, clean, permanent marks in materials hard or impossible to mark with regular Laser Marking Systems.
  • Great for marking sensitive electronics or munitions.
  • Enable to mark solar cells of various material compositions.
  • Plug and Play.
  • 3-year complete system warranty.
  • Model available: U-5G.

YV04 Laser Marker

  • The smallest footprint of any YV04 laser marker in the market.
  • Highest marking speeds for maximum throughput.
  • Anneals metal without etching into the surface.
  • Facilitates color change on plastics without foaming or melting.
  • Enables one-layer-at-a-time ablation on coated metals.
  • Plug and Play
  • 3-year complete system warranty.
  • Model available: A-10 and A-20

Fiber Laser Marker

  • Provides the deepest etching & engraving
  • Designed for integration in automation systems.
  • Best for harder metals (Rockwell hardness scale >50)
  • Ideal for very thin metals.
  • The most powerful, up to 100 watts.
  • No need for stand alone software. Can be operated or monitored over your phone or tablet devices.
  • Built for maximum uptime and minimal maintenance.
  • Small sport size with large marking areas.
  • 2-year complete system warranty.
  • Models available: Integra 20 Watt, integra 30 Watt, integra 50 Watt and integra 100 Watt

Laser marking concept

Laser marking materials and samples

Laser marking systems

Laser safety and accessories

OUR LASER MARKING MACHINES  Our wide selection of laser marking systems ensures the best mark for each material. We manufacture only galvanometer-based (flying mirror) laser marking systems because of the distinct advantages they provide over gantry (flying head) marketing systems. These benefits include accuracy, speed and repetition and easy integration into production lines. All of our lasers are available for Class IV and Class I configuration. 

Call Us:  (248) 594-2400


absorbs the 808 nm laser light from the diode (1) as input and produces continuous wave (CW) laser light at a wavelength of 1064 nm. The Q-switch (4) converts the CW light from the Vanadate crystal to a stream of light pulses. As a simple analogy, imagine kinking a garden hose for a second and then releasing it. The kink-and-release process is repeated very rapidly. In this manner, a big pulse of water is produced at regular intervals from a steady input stream. A Q-switched, Vanadate laser follows a similar pattern. While the Q-switch (4) is closed, the laser diode (1) fills the Vanadate crystal (3) with energy. When the Q-switch is opened, the stored energy comes out of the crystal as very short, intense pulses of laser light. The Q-switch is capable of opening and closing 1,000 to 70,000 times per second.

The pulses of laser light that emerge from the laser head (5) are directed to a pair of scanning mirrors (6). The mirrors are rapidly tilted using galvo-scanners. Software running on a desktop or a laptop computer controls the motion of the mirrors, directing each pulse to the proper location on the work piece (8).

The laser pulses that leave the scanning mirrors (6) pass through a specially designed lens (7), known as an F-Theta lens, which focuses them onto the work piece (8). The F-Theta lens is the final component of the marking system; it is specially designed to produce a flat, tightly focused image on the work piece, typically less than 40 microns (less than 2/1000ths of an inch) across. In this manner, a high resolution mark is obtained. Additionally, by squeezing the energy contained in each pulse into the smallest possible spot, the marking/engraving capability of each pulse is amplified, increasing both the quality and speed of the marking process.A

​About us

Contact us

Comtech North America LLC

55 East Long Lake Road

Troy, MI 48085 USA


 A laser diode (1) takes electricity as input and produces laser light as output. The laser diode emits continuous wave (CW) laser light at a wavelength of 808 nm. Since the output wavelength depends strongly on the diode temperature, the markers utilize a thermo- electric cooling system which guarantees that the laser head (5) receives stable input. The laser light from the diode travels from the controller through a fiber optic cable (2) to the laser head (5), which is situated inside the marker.

The laser head (5) contains a number of optical elements, most importantly an Nd:YVO4 (Vanadate) laser crystal (3) and a Q-switch (4). The Vanadate crystal